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The approach taken in this work allows the incorporation of 
unusual amino acids. In a complementary approach, biosynthetic 
methods have been developed to introduce unusual amino acids 
into proteins.4 However, attempts to introduce D amino acids 
into /8-lactamase4 or T4 lysozyme5 using this method have proven 
unsuccessful. 
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Strained heterometallacycles have recently become the focus 
of an increasing number of structural and synthetic studies. As 
a consequence of these investigations, zirconocene thioaldehyde 
complexes,2 zirconaaziridines,3,4 and transient azatitanacyclo-
butenes5 have been identified as particularly versatile synthetic 
intermediates. The preparative utility of these heterometallacycles 
derives, in part, from their ability to engage in bond-forming 
reactions with appropriate electrophiles. Recently, Walsh, 
Hollander, and Bergman reported the generation of several 
thermally stable imidozirconocene complexes and described some 
of the intermolecular trapping reactions of these species.63 In 
this communication we wish to report the direct preparation of 
a related class of group IV metal-imido complexes as well as the 
first examples of intramolecular [2 + 2] cycloadditions involving 
these intermediates.7 We further demonstrate that the inter­
mediate azametalletines 3 can serve as conventional organo-
metallics in electrophilic substitution reactions leading to selective 
C or N functionalization (Scheme I). 

Jekel-Vroegop and Teuben have noted that monomelic titanium 
complexes of the type CpTi(NHR)Cl2 undergo self-condensation 
to provide the corresponding bridging imido dimers under ambient 
conditions.8 The remarkable facility of this reaction strongly 
suggested the feasibility of performing internal [2 + 2] cyclo­
additions between the imido monomers formed in this process and 
suitably disposed addends. In an initial experiment designed to 
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test this possibility, 5-phenylpent-4-yn-l-ylamine (la) was slowly 
added to a solution OfCpTiCl3

9 (1.0 equiv) and ((-Pr)2NEt (1.2 
equiv) in THF at 25 0C. As had been expected, the A'-pyrroline 
4a was obtained from this reaction as the exclusive product in 74% 
yield. In an effort to more clearly define the nature of the reactive 
intermediates en route to 4a, a series of reactions were performed 
under rigorously aprotic conditions. To this end, slow addition 
of la to a preformed solution of CpTi(CH3)2Cl10 (prepared in situ 
from CpTiCl3 and 2 equiv of CH3Li) in THF at 25 0C gave a 
dark red solution of the putative titanacycle 3a with concomitant 
evolution of CH4.

11 Protonation of 3a (CH3OH) gave rise to the 
anticipated A'-pyrroline 4a in 96% yield. Deuteration of 3a (D2O) 
provided the corresponding dideuterio derivative 4a(d). Direct 
trapping of 3a with isobutyronitrile5b followed by simple pro­
tonation (5% aqueous HCl, 25 0C) furnished the vinylogous 
amidine 7 in 63% isolated yield. As expected, direct hydrolysis 
of the presumed metallacychc intermediate 6 under more vigorous 
conditions (20% aqueous HCl, 65 0C, 2 h) gave rise to vinylogous 
amide 8 in 67% isolated yield (Scheme II). Unfortunately, all 
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attempts to date to isolate and characterize bicyclic azatitanetines 
such as 3a have been frustrated by the high reactivity of these 
species.12 

Subsequent to these studies this cyclization procedure was 
extended to a range of representative alkynylamines (e.g., la-e). 
That an analogous procedure could be utilized for the generation 
of mono Cp imidozirconium complexes was demonstrated by the 
treatment of CpZr(CH3)2Cl (prepared in situ from CpZrCl3-
DME13 and 2 equiv of CH3Li) with lb in THF at 25 0C to afford 
4b (82% isolated) after methanolysis. It is of particular signif­
icance in a preparative context that the generation OfCpM(X)-
=NR complexes from the precursors CpM(CHj)2X and H2NR 
proceeds rapidly at temperatures <25 0C. By way of contrast, 
the corresponding reactions of hindered primary amines with 
Cp2Zr(CH3J2 require 3 days at 85 0C to produce imidozirconocene 
complexes of the type Cp2Zr=NR.63 Moreover, exposure of the 
relatively unhindered amine la to Cp2Zr(CH3)2 resulted in no 
appreciable reaction at 25 0C and only minimal reaction at higher 
temperatures (e.g., 80 0C, 24 h). It is of particular interest that 
heteroannulations of the above variety can be readily effected 
using catalytic quantities of CpTiCl3 at 25 0C (Scheme III). 

The synthetic generality of this new transition metal based 
method for heteroannulation was subsequently tested by its ap­
plication to the construction of a variety of representative ring 
systems (Table I).14 

The reactive azametalletines 3 formed as intermediates in 
stoichiometric cyclization reactions could be selectively func-
tionalized on carbon or nitrogen by the use of appropriate car­
bon-centered electrophiles. Accordingly, treatment of repre­
sentative azametalletines (e.g., 3a) with acyl cyanides15 or nitriles 
gave rise to exclusive functionalization at carbon, leading to the 
formation of vinylogous amides (e.g., 8) or vinylogous amidines 
[(e.g., 7 (vide infra)], respectively. By way of contrast, acylation 
of azametalletines with acyl chlorides led to selective function-
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0A: 20 mol % CpTiCl3, 40 mol % /-Pr2NEt, THF, 25 0C. B: 
CpTi(CHj)2Cl, THF, 25 0C. C: CpZr(CHj)2Cl, THF, 25 8C. D: 20 
mol % CpTiCl3, 40 mol % PhN(CHj)2, C7H8, 80 0C. 

alization at nitrogen to provide enamides such as 9 (Scheme IV). 
The foregoing examples provide a concise illustration of the 

synthetic potential of this new approach to heterocycle annulation. 
The utilization of this novel heteroannulation procedure for the 
synthesis of representative indolizidine alkaloids16 as well as related 
naturally occurring ring systems will be described in future ac­
counts from these laboratories. 
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The chemistry of cationic metallocene compounds (e.g, 1) of 
the group 4 transition elements has attracted recent attention; such 
compounds function as useful models for the catalytic interme­
diates involved in Ziegler-Natta (Z-N) polymerization and hy-
drogenation of simple olefins.1 These compounds have also been 
shown to be potentially useful in organic synthesis. For example, 
such compounds function as catalysts for the preparation of 
substituted pyridines,2 and related heteroatom derivatives function 
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